Let ${\left( {1 + x + {x^2}} \right)^{20}}\left( {2x + 1} \right) = {a_0} + {a_1}{x^1} + {a_2}{x^2} + ... + {a_{41}}{x^{41}}$ , then $\frac{{{a_0}}}{1} + \frac{{{a_1}}}{2} + .... + \frac{{{a_{41}}}}{{42}}$ is equal to 

  • A

    $\left( {\frac{{{2^{21}} - 1}}{{21}}} \right)$

  • B

    $\left( {\frac{{{3^{21}} - 1}}{{21}}} \right)$

  • C

    $\left( {\frac{{{2^{20}} - 1}}{{20}}} \right)$

  • D

    $\left( {\frac{{{3^{20}} - 1}}{{20}}} \right)$

Similar Questions

The sum of the coefficients in the expansion of ${(1 + x - 3{x^2})^{3148}}$ is

If ${(1 + x)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ...... + {C_{15}}{x^{15}},$ then ${C_2} + 2{C_3} + 3{C_4} + .... + 14{C_{15}} = $

  • [IIT 1966]

The sum of all the coefficients in the binomial expansion of ${({x^2} + x - 3)^{319}}$ is

Let $a =$ Minimum $\{x^2 + 2x + 3, x \in R\}$ and $b = \mathop {\lim }\limits_{\theta  \to 0} \frac{{1 - \cos \theta }}{{{\theta ^2}}}$ The value of $\sum\limits_{r = 0}^n {{a^r}.{b^{n - r}}} $ is

If ${\sum\limits_{i = 1}^{20} {\left( {\frac{{{}^{20}{C_{i - 1}}}}{{{}^{20}{C_i} + {}^{20}{C_{i - 1}}}}} \right)} ^3}\, = \frac{k}{{21}}$, then $k$ equals

  • [JEE MAIN 2019]